Standart Posts – MOTOR https://www.andmotor.com Genphoal Technology, Inc. Sun, 23 Jul 2017 11:47:46 +0000 en-US hourly 1 https://wordpress.org/?v=4.7.28 Brushless DC electric motor https://www.andmotor.com/brushless-dc-electric-motor/ https://www.andmotor.com/brushless-dc-electric-motor/#respond Thu, 19 Feb 2015 23:03:20 +0000 http://rttheme19.rtthemes.com/2015/02/19/gallery-post-type-3/ Brushless DC electric motor BLDC motors, BL motors also known as electronically commutated motors (ECMs, EC motors) are synchronous motors powered by DC electricity via an inverter/switching power supply which produces an AC/bi-directional electric current to drive each phase of the motor via a closed loop controller. The controller times commutation (hence rpm) and creates […]

The post Brushless DC electric motor appeared first on MOTOR.

]]>
Brushless DC electric motor

BLDC motors, BL motors also known as electronically commutated motors (ECMs, EC motors) are synchronous motors powered by DC electricity via an inverter/switching power supply which produces an AC/bi-directional electric current to drive each phase of the motor via a closed loop controller. The controller times commutation (hence rpm) and creates current waveforms (hence torque). In this context alternating current does not imply but does include a sinusoidal waveform, with minimal restriction on waveform; it must be periodic, and its frequency will determine motor rpm, and the waveform does affect how smooth the generated torque is as well as the motors efficiency at transforming electrical to mechanical energy. In a well designed PMSM the air gap magnetic flux is spatial sinusoidal and the phase commutation currents are sinusoidal, ninety degrees out of phase.
The motor structural elements of a brushless motor system is typically permanent magnet synchronous motor, but can also be a switched reluctance motor, or induction motor.

Brushless motors may be implemented as stepper motors as well; however, the term “stepper motor” tends to be used for motors with a radically different design and controlled with an open loop (hence the controller cannot detect when the stepper does not step due to too high shaft load; there is no shaft position sensor). They are frequently stopped with the rotor in a defined angular position while still producing torque. A well design power supply/controller/PMSM can also be held at zero rpm and finite torque. Two key performance parameters of brushless DC motors are the motor constants Kt ( torque constant) and Ke ( BEMF constant also known as speed constant Kv = 1/Ke ).

Brushless vs brushed motors (Brushless DC electric motor)

Brushed DC motors have been around since the mid-19th century, but brushless motors are a fairly recent arrival; a first step in the 1960s thanks to advances in solid state technology,[3] with further improvements in the 1980s thanks to better permanent magnet materials.

Brushed DC motors develop a maximum torque when stationary, linearly decreasing as velocity increases.[4] Some limitations of brushed motors can be overcome by brushless motors; they include higher efficiency and a lower susceptibility to mechanical wear. These benefits come at the cost of potentially less rugged, more complex, and more expensive control electronics.

A typical brushless motor has permanent magnets which rotate around a fixed armature, eliminating problems associated with connecting current to the moving armature. An electronic controller replaces the brush/commutator assembly of the brushed DC motor, which continually switches the phase to the windings to keep the motor turning. The controller performs similar timed power distribution by using a solid-state circuit rather than the brush/commutator system.

Brushless motors offer several advantages over brushed DC motors, including high torque to weight ratio, more torque per watt (increased efficiency), increased reliability, reduced noise, longer lifetime (no brush and commutator erosion), elimination of ionizing sparks from the commutator, and overall reduction of electromagnetic interference (EMI). With no windings on the rotor, they are not subjected to centrifugal forces, and because the windings are supported by the housing, they can be cooled by conduction, requiring no airflow inside the motor for cooling. This in turn means that the motor’s internals can be entirely enclosed and protected from dirt or other foreign matter.

Brushless motor commutation can be implemented in software using a microcontroller or microprocessor computer, or may alternatively be implemented in analogue hardware, or in digital firmware using an FPGA. Commutation with electronics instead of brushes allows for greater flexibility and capabilities not available with brushed DC motors, including speed limiting, “micro stepped” operation for slow and/or fine motion control, and a holding torque when stationary. Controller software can be customized to the specific motor being used in the application, resulting in greater commutation efficiency.

The maximum power that can be applied to a brushless motor is limited almost exclusively by heat;[citation needed] too much heat weakens the magnets[5] and may damage the winding’s insulation.

When converting electricity into mechanical power, brushless motors are more efficient than brushed motors. This improvement is largely due to the frequency at which the electricity is switched determined by the position sensor feedback. Additional gains are due to the absence of brushes, which reduces mechanical energy loss due to friction. The enhanced efficiency is greatest in the no-load and low-load region of the motor’s performance curve.[citation needed] Under high mechanical loads, brushless motors and high-quality brushed motors are comparable in efficiency.

The post Brushless DC electric motor appeared first on MOTOR.

]]>
https://www.andmotor.com/brushless-dc-electric-motor/feed/ 0
servo motor https://www.andmotor.com/servo-motor/ https://www.andmotor.com/servo-motor/#respond Wed, 18 Feb 2015 23:03:20 +0000 http://rttheme19.rtthemes.com/2015/02/19/standart-post-2/ servo motor A servomotor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration. It consists of a suitable motor coupled to a sensor for position feedback. It also requires a relatively sophisticated controller, often a dedicated module designed specifically for use with servomotors. Servomotors […]

The post servo motor appeared first on MOTOR.

]]>
servo motor

A servomotor is a rotary actuator or linear actuator that allows for precise control of angular or linear position, velocity and acceleration. It consists of a suitable motor coupled to a sensor for position feedback. It also requires a relatively sophisticated controller, often a dedicated module designed specifically for use with servomotors. Servomotors are not a specific class of motor although the term servomotor is often used to refer to a motor suitable for use in a closed-loop control system.Servomotors are used in applications such as robotics, CNC machinery or automated manufacturing.

Mechanism

A servomotor is a closed-loop servomechanism that uses position feedback to control its motion and final position. The input to its control is a signal (either analogue or digital) representing the position commanded for the output shaft.

The motor is paired with some type of encoder to provide position and speed feedback. In the simplest case, only the position is measured. The measured position of the output is compared to the command position, the external input to the controller. If the output position differs from that required, an error signal is generated which then causes the motor to rotate in either direction, as needed to bring the output shaft to the appropriate position. As the positions approach, the error signal reduces to zero and the motor stops.

The very simplest servomotors use position-only sensing via a potentiometer and bang-bang control of their motor; the motor always rotates at full speed (or is stopped). This type of servomotor is not widely used in industrial motion control, but it forms the basis of the simple and cheap servos used for radio-controlled models.

More sophisticated servomotors use optical rotary encoders to measure the speed of the output shaft and a variable-speed drive to control the motor speed.Both of these enhancements, usually in combination with a PID control algorithm, allow the servomotor to be brought to its commanded position more quickly and more precisely, with less overshooting.

Servomotors vs. stepper motors
This Section needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.

A servomotor consumes power as it rotates to the commanded position but then the servomotor rests. Stepper motors continue to consume power to lock in and hold the commanded position.

Servomotors are generally used as a high-performance alternative to the stepper motor. Stepper motors have some inherent ability to control position, as they have built-in output steps. This often allows them to be used as an open-loop position control, without any feedback encoder, as their drive signal specifies the number of steps of movement to rotate, but for this the controller needs to ‘know’ the position of the stepper motor on power up. Therefore, on first power up, the controller will have to activate the stepper motor and turn it to a known position, e.g. until it activates an end limit switch. This can be observed when switching on an inkjet printer; the controller will move the ink jet carrier to the extreme left and right to establish the end positions. A servomotor will immediately turn to whatever angle the controller instructs it to, regardless of the initial position at power up.

The lack of feedback of a stepper motor limits its performance, as the stepper motor can only drive a load that is well within its capacity, otherwise missed steps under load may lead to positioning errors and the system may have to be restarted or recalibrated. The encoder and controller of a servomotor are an additional cost, but they optimise the performance of the overall system (for all of speed, power and accuracy) relative to the capacity of the basic motor. With larger systems, where a powerful motor represents an increasing proportion of the system cost, servomotors have the advantage.

There has been increasing popularity in closed loop stepper motors in recent years. They act like servomotors but have some differences in their software control to get smooth motion. The top 3 manufacturers of closed loop stepper motor systems employ magnetic encoders as their feedback device of choice due to low cost and resistance to vibration. The main benefit of a closed loop stepper motor is the cost to performance ratio. There is also no need to tune the PID controller on a closed loop stepper system.

Many applications, such as laser cutting machines, may be offered in two ranges, the low-priced range using stepper motors and the high-performance range using servomotors.

The post servo motor appeared first on MOTOR.

]]>
https://www.andmotor.com/servo-motor/feed/ 0
linear motor https://www.andmotor.com/linear-motor/ https://www.andmotor.com/linear-motor/#respond Mon, 19 Jan 2015 23:03:20 +0000 http://rttheme19.rtthemes.com/2015/01/18/proin-pulvinar-viverra-dictum-2/ linear motor is an electric motor that has had its stator and rotor “unrolled” so that instead of producing a torque (rotation) it produces a linear force along its length. However, linear motors are not necessarily straight. Characteristically, a linear motor’s active section has ends, whereas more conventional motors are arranged as a continuous loop.The […]

The post linear motor appeared first on MOTOR.

]]>
linear motor

is an electric motor that has had its stator and rotor “unrolled” so that instead of producing a torque (rotation) it produces a linear force along its length. However, linear motors are not necessarily straight. Characteristically, a linear motor’s active section has ends, whereas more conventional motors are arranged as a continuous loop.The most common mode of operation is as a Lorentz-type actuator, in which the applied force is linearly proportional to the current and the magnetic field.

Many designs have been put forward for linear motors, falling into two major categories, low-acceleration and high-acceleration linear motors. Low-acceleration linear motors are suitable for maglev trains and other ground-based transportation applications. High-acceleration linear motors are normally rather short, and are designed to accelerate an object to a very high speed, for example see the coilgun.

High-acceleration linear motors are typically used in studies of hypervelocity collisions, as weapons, or as mass drivers for spacecraft propulsion.[citation needed] They are usually of the AC linear induction motor (LIM) design with an active three-phase winding on one side of the air-gap and a passive conductor plate on the other side. However, the direct current homopolar linear motor railgun is another high acceleration linear motor design. The low-acceleration, high speed and high power motors are usually of the linear synchronous motor (LSM) design, with an active winding on one side of the air-gap and an array of alternate-pole magnets on the other side. These magnets can be permanent magnets or electromagnets. The Shanghai Transrapid motor is an LSM.

Synchronous

In this design the rate of movement of the magnetic field is controlled, usually electronically, to track the motion of the rotor. For cost reasons synchronous linear motors rarely use commutators, so the rotor often contains permanent magnets, or soft iron. Examples include coilguns and the motors used on some maglev systems, as well as many other linear motors.
Induction A typical 3 phase linear induction motor. An aluminium plate on top often forms the secondary “rotor”.

Main article: Linear induction motor

In this design, the force is produced by a moving linear magnetic field acting on conductors in the field. Any conductor, be it a loop, a coil or simply a piece of plate metal, that is placed in this field will have eddy currents induced in it thus creating an opposing magnetic field, in accordance with Lenz’s law. The two opposing fields will repel each other, thus creating motion as the magnetic field sweeps through the metal.

The post linear motor appeared first on MOTOR.

]]>
https://www.andmotor.com/linear-motor/feed/ 0
tubular electric Linear Actuator 12/24V dc motor https://www.andmotor.com/tubular-electric-linear-actuator-1224v-dc-motor/ https://www.andmotor.com/tubular-electric-linear-actuator-1224v-dc-motor/#respond Sun, 18 Jan 2015 23:03:20 +0000 http://rttheme19.rtthemes.com/2015/02/18/standart-post-2-2/ 12/24V dc motor ,tubular mini electric Linear Actuator Parameter: Load:100-6000N Speed:3.5-55mm/s Stroke:0-400mm IP67,IP67M Hall Sensor,Over current protection,Limit switch tubular mini electric Linear Actuator Main features: . Normal Tempeture range:-5°C to 40°C . Duty cycle: Max. 10% or 2 minutes in use followed by 18 min.Rest . Very small dimensions and elegant design . High efficiency DC permanent magnet industrial motor 12V/24V with planetary gear . IP54 &  IP66 protection class , Waterproof and dust-proof . Over current circuit protection . Hall sensors for precision control and positioning . No load noise: 50dB .Certified:CE . Diameter 52mm actuator’s material is aluminum Technical parameters    Max.Load(N)       […]

The post tubular electric Linear Actuator 12/24V dc motor appeared first on MOTOR.

]]>

12/24V dc motor ,tubular mini electric Linear Actuator

Parameter:

Load:100-6000N

Speed:3.5-55mm/s

Stroke:0-400mm

IP67,IP67M

Hall Sensor,Over current protection,Limit switch

tubular mini electric Linear Actuator Main features:

. Normal Tempeture range:-5°C to 40°C

. Duty cycle: Max. 10% or 2 minutes in use followed by 18 min.Rest

. Very small dimensions and elegant design

. High efficiency DC permanent magnet industrial motor 12V/24V with planetary gear

. IP54 &  IP66 protection class , Waterproof and dust-proof

. Over current circuit protection

. Hall sensors for precision control and positioning

. No load noise: 50dB

.Certified:CE

. Diameter 52mm actuator’s material is aluminum

12/24V dc motor ,tubular mini electric Linear Actuator12/24V dc motor ,tubular mini electric Linear Actuator

Technical parameters

   Max.Load(N)       100       300      400       800      1200     1800     2300
  Speed(mm/s)        30        17       14        7         5       3     2.3

 

  Stroke(mm)      50     100     150   200     250     300     350     400      Customize

 

 

Q1: When can I get the quotation?

A1: Usually you need to send below information, we will quote within 12 hours after we get it.

1) For customization: material, size, input,  Load  capacity,quantity, color speed  or frequency  , etc.

Q2: Can you help with the design?

A2: Yes, we have a professional team having rich experience in linear actuator  design and manufacturing.

Just tell us your ideas and we will help to carry our your ideas into perfect linear actuator

Q3: How long can I expect to get the sample?

A4: After you pay the sample freight charge and send us confirmed files, the samples will be ready in 3-7 days.

The samples will be sent to you via express and arrived in 3-5 workdays.

Q4: What about the lead time for mass production?

Honestly, it depends on the order quantity and the season you place the order. Generally speaking,

we suggest that you start to inquire two months before the date you would like to get the products at your country.

The post tubular electric Linear Actuator 12/24V dc motor appeared first on MOTOR.

]]>
https://www.andmotor.com/tubular-electric-linear-actuator-1224v-dc-motor/feed/ 0
Brushed DC electric motor https://www.andmotor.com/brushed-dc-electric-motor/ https://www.andmotor.com/brushed-dc-electric-motor/#respond Fri, 16 Jan 2015 23:03:20 +0000 http://rttheme19.rtthemes.com/2015/02/19/gallery-post-type-2-2/ Brushed DC electric motor A stepper motor or step motor or stepping motor is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor’s position can then be commanded to move and hold at one of these steps without any feedback sensor (an open-loop controller), as long […]

The post Brushed DC electric motor appeared first on MOTOR.

]]>
Brushed DC electric motor

A stepper motor or step motor or stepping motor is a brushless DC electric motor that divides a full rotation into a number of equal steps. The motor’s position can then be commanded to move and hold at one of these steps without any feedback sensor (an open-loop controller), as long as the motor is carefully sized to the application in respect to torque and speed.The brushed DC electric motor generates torque directly from DC power supplied to the motor by using internal commutation, stationary magnets (permanent or electromagnets), and rotating electrical magnets.

Advantages of a brushed DC motor include low initial cost, high reliability, and simple control of motor speed. Disadvantages are high maintenance and low life-span for high intensity uses. Maintenance involves regularly replacing the carbon brushes and springs which carry the electric current, as well as cleaning or replacing the commutator. These components are necessary for transferring electrical power from outside the motor to the spinning wire windings of the rotor inside the motor. Brushes consist of conductors.

Brushless
Main articles: Brushless DC electric motor and Switched reluctance motor

Typical brushless DC motors use one or more permanent magnets in the rotor and electromagnets on the motor housing for the stator. A motor controller converts DC to AC. This design is mechanically simpler than that of brushed motors because it eliminates the complication of transferring power from outside the motor to the spinning rotor. The motor controller can sense the rotor’s position via Hall effect sensors or similar devices and can precisely control the timing, phase, etc., of the current in the rotor coils to optimize torque, conserve power, regulate speed, and even apply some braking. Advantages of brushless motors include long life span, little or no maintenance, and high efficiency. Disadvantages include high initial cost, and more complicated motor speed controllers. Some such brushless motors are sometimes referred to as “synchronous motors” although they have no external power supply to be synchronized with, as would be the case with normal AC synchronous motors.
Uncommutated

Other types of DC motors require no commutation.

Homopolar motor – A homopolar motor has a magnetic field along the axis of rotation and an electric current that at some point is not parallel to the magnetic field. The name homopolar refers to the absence of polarity change. Homopolar motors necessarily have a single-turn coil, which limits them to very low voltages. This has restricted the practical application of this type of motor.
Ball bearing motor – A ball bearing motor is an unusual electric motor that consists of two ball bearing-type bearings, with the inner races mounted on a common conductive shaft, and the outer races connected to a high current, low voltage power supply. An alternative construction fits the outer races inside a metal tube, while the inner races are mounted on a shaft with a non-conductive section (e.g. two sleeves on an insulating rod). This method has the advantage that the tube will act as a flywheel. The direction of rotation is determined by the initial spin which is usually required to get it going.

Permanent magnet stators
Main article: Permanent-magnet electric motor

A PM motor does not have a field winding on the stator frame, instead relying on PMs to provide the magnetic field against which the rotor field interacts to produce torque. Compensating windings in series with the armature may be used on large motors to improve commutation under load. Because this field is fixed, it cannot be adjusted for speed control. PM fields (stators) are convenient in miniature motors to eliminate the power consumption of the field winding. Most larger DC motors are of the “dynamo” type, which have stator windings. Historically, PMs could not be made to retain high flux if they were disassembled; field windings were more practical to obtain the needed amount of flux. However, large PMs are costly, as well as dangerous and difficult to assemble; this favors wound fields for large machines.

To minimize overall weight and size, miniature PM motors may use high energy magnets made with neodymium or other strategic elements; most such are neodymium-iron-boron alloy. With their higher flux density, electric machines with high-energy PMs are at least competitive with all optimally designed singly fed synchronous and induction electric machines. Miniature motors resemble the structure in the illustration, except that they have at least three rotor poles (to ensure starting, regardless of rotor position) and their outer housing is a steel tube that magnetically links the exteriors of the curved field magnets.
Wound stators
A field coil may be connected in shunt, in series, or in compound with the armature of a DC machine (motor or generator)
Main article: universal motor
See also: Excitation (magnetic)

There are three types of electrical connections between the stator and rotor possible for DC electric motors: series, shunt/parallel and compound (various blends of series and shunt/parallel) and each has unique speed/torque characteristics appropriate for different loading torque profiles/signatures.
Types

There are three main types of stepper motors:

  • Permanent magnet stepper
  • Hybrid synchronous stepper
  • Variable reluctance stepper

 

The post Brushed DC electric motor appeared first on MOTOR.

]]>
https://www.andmotor.com/brushed-dc-electric-motor/feed/ 0
brushed DC motor https://www.andmotor.com/brushed-dc-motor/ https://www.andmotor.com/brushed-dc-motor/#respond Thu, 15 Jan 2015 23:03:20 +0000 http://rttheme19.rtthemes.com/2015/01/16/fusce-pretium-nisi-purus-2/ brushed DC motor is an internally commutated electric motor designed to be run from a direct current power source. Brushed motors were the first commercially important application of electric power to driving mechanical energy, and DC distribution systems were used for more than 100 years to operate motors in commercial and industrial buildings. Brushed DC […]

The post brushed DC motor appeared first on MOTOR.

]]>
brushed DC motor

is an internally commutated electric motor designed to be run from a direct current power source. Brushed motors were the first commercially important application of electric power to driving mechanical energy, and DC distribution systems were used for more than 100 years to operate motors in commercial and industrial buildings. Brushed DC motors can be varied in speed by changing the operating voltage or the strength of the magnetic field. Depending on the connections of the field to the power supply, the speed and torque characteristics of a brushed motor can be altered to provide steady speed or speed inversely proportional to the mechanical load. Brushed motors continue to be used for electrical propulsion, cranes, paper machines and steel rolling mills. Since the brushes wear down and require replacement, brushless DC motors using power electronic devices have displaced brushed motors from many applications. The following graphics illustrate a simple, two-pole, brushed, DC motor.When a current passes through the coil wound around a soft iron core, the side of the positive pole is acted upon by an upwards force, while the other side is acted upon by a downward force. According to Fleming’s left hand rule, the forces cause a turning effect on the coil, making it rotate. To make the motor rotate in a constant direction, “direct current” commutators make the current reverse in direction every half a cycle (in a two-pole motor) thus causing the motor to continue to rotate in the same direction.

A problem with the motor shown above is that when the plane of the coil is parallel to the magnetic field—i.e. when the rotor poles are 90 degrees from the stator poles—the torque is zero. In the pictures above, this occurs when the core of the coil is horizontal—the position it is just about to reach in the last picture on the right. The motor would not be able to start in this position. However, once it was started, it would continue to rotate through this position by momentum.

DC motor rotation
      

There is a second problem with this simple pole design. At the zero-torque position, both commutator brushes are touching (bridging) both commutator plates, resulting in a short-circuit. The power leads are shorted together through the commutator plates, and the coil is also short-circuited through both brushes (the coil is shorted twice, once through each brush independently). Note that this problem is independent of the non-starting problem above; even if there were a high current in the coil at this position, there would still be zero torque. The problem here is that this short uselessly consumes power without producing any motion (nor even any coil current.) In a low-current battery-powered demonstration this short-circuiting is generally not considered harmful. However, if a two-pole motor were designed to do actual work with several hundred watts of power output, this shorting could result in severe commutator overheating, brush damage, and potential welding of the brushes—if they were metallic—to the commutator. Carbon brushes, which are often used, would not weld. In any case, a short like this is very wasteful, drains batteries rapidly and, at a minimum, requires power supply components to be designed to much higher standards than would be needed just to run the motor without the shorting.
The inside of a miniature DC motor as would be found in a toy.

One simple solution is to put a gap between the commutator plates which is wider than the ends of the brushes. This increases the zero-torque range of angular positions but eliminates the shorting problem; if the motor is started spinning by an outside force it will continue spinning. With this modification, it can also be effectively turned off simply by stalling (stopping) it in a position in the zero-torque (i.e. commutator non-contacting) angle range. This design is sometimes seen in homebuilt hobby motors, e.g. for science fairs and such designs can be found in some published science project books. A clear downside of this simple solution is that the motor now coasts through a substantial arc of rotation twice per revolution and the torque is pulsed. This may work for electric fans or to keep a flywheel spinning but there are many applications, even where starting and stopping are not necessary, for which it is completely inadequate, such as driving the capstan of a tape transport, or any instance where to speed up and slow down often and quickly is a requirement. Another disadvantage is that, since the coils have a measure of self inductance, current flowing in them cannot suddenly stop. The current attempts to jump the opening gap between the commutator segment and the brush, causing arcing.

Even for fans and flywheels, the clear weaknesses remaining in this design—especially that it is not self-starting from all positions—make it impractical for working use, especially considering the better alternatives that exist. Unlike the demonstration motor above, DC motors are commonly designed with more than two poles, are able to start from any position, and do not have any position where current can flow without producing electromotive power by passing through some coil.

brushed DC motor

Many common small brushed DC motors used in toys and small consumer appliances, the simplest mass-produced DC motors to be found, have three-pole armatures. The brushes can now bridge two adjacent commutator segments without causing a short circuit. These three-pole armatures also have the advantage that current from the brushes either flows through two coils in series or through just one coil. Starting with the current in an individual coil at half its nominal value (as a result of flowing through two coils in series), it rises to its nominal value and then falls to half this value. The sequence then continues with current in the reverse direction.

The post brushed DC motor appeared first on MOTOR.

]]>
https://www.andmotor.com/brushed-dc-motor/feed/ 0
DC Gear Motors Reduction https://www.andmotor.com/dc-gear-motors-reduction/ https://www.andmotor.com/dc-gear-motors-reduction/#respond Mon, 12 Jan 2015 23:03:20 +0000 http://rttheme19.rtthemes.com/2015/02/19/self-hosted-video-post-2-2/ A transmission is a machine in a power transmission system, which provides controlled application of the power. Often the term transmission refers simply to the gearbox that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device. the term transmission refers to the whole drivetrain, including […]

The post DC Gear Motors Reduction appeared first on MOTOR.

]]>
A transmission is a machine in a power transmission system, which provides controlled application of the power. Often the term transmission refers simply to the gearbox that uses gears and gear trains to provide speed and torque conversions from a rotating power source to another device.

the term transmission refers to the whole drivetrain, including clutch, gearbox, prop shaft (for rear-wheel drive), differential, and final drive shafts. In American English, however, the term refers more specifically to the gearbox alone, and detailed usage differs.

The most common use is in motor vehicles, where the transmission adapts the output of the internal combustion engine to the drive wheels. Such engines need to operate at a relatively high rotational speed, which is inappropriate for starting, stopping, and slower travel. The transmission reduces the higher engine speed to the slower wheel speed, increasing torque in the process. Transmissions are also used on pedal bicycles, fixed machines, and where different rotational speeds and torques are adapted.

Often, a transmission has multiple gear ratios (or simply “gears”) with the ability to switch between them as speed varies. This switching may be done manually (by the operator) or automatically. Directional (forward and reverse) control may also be provided. Single-ratio transmissions also exist, which simply change the speed and torque (and sometimes direction) of motor output.

In motor vehicles, the transmission generally is connected to the engine crankshaft via a flywheel or clutch or fluid coupling, partly because internal combustion engines cannot run below a particular speed. The output of the transmission is transmitted via the driveshaft to one or more differentials, which drives the wheels. While a differential may also provide gear reduction, its primary purpose is to permit the wheels at either end of an axle to rotate at different speeds (essential to avoid wheel slippage on turns) as it changes the direction of rotation.

Conventional gear/belt transmissions are not the only mechanism for speed/torque adaptation. Alternative mechanisms include torque converters and power transformation (e.g. diesel-electric transmission and hydraulic drive system). Hybrid configurations also exist. Automatic transmissions use a valve body to shift gears using fluid pressures in conjunction with an ecm.

Early transmissions included the right-angle drives and other gearing in windmills, horse-powered devices, and steam engines, in support of pumping, milling, and hoisting.

Most modern gearboxes are used to increase torque while reducing the speed of a prime mover output shaft (e.g. a motor crankshaft). This means that the output shaft of a gearbox rotates at a slower rate than the input shaft, and this reduction in speed produces a mechanical advantage, increasing torque. A gearbox can be set up to do the opposite and provide an increase in shaft speed with a reduction of torque. Some of the simplest gearboxes merely change the physical rotational direction of power transmission.

Many typical automobile transmissions include the ability to select one of several gear ratios. In this case, most of the gear ratios (often simply called “gears”) are used to slow down the output speed of the engine and increase torque. However, the highest gears may be “overdrive” types that increase the output speed.
Uses

Gearboxes have found use in a wide variety of different—often stationary—applications, such as wind turbines.

Transmissions are also used in agricultural, industrial, construction, mining and automotive equipment. In addition to ordinary transmission equipped with gears, such equipment makes extensive use of the hydrostatic drive and electrical adjustable-speed drives.
Simple
The main gearbox and rotor of a Bristol Sycamore helicopter

The simplest transmissions, often called gearboxes to reflect their simplicity (although complex systems are also called gearboxes in the vernacular), provide gear reduction (or, more rarely, an increase in speed), sometimes in conjunction with a right-angle change in direction of the shaft (typically in helicopters, see picture). These are often used on PTO-powered agricultural equipment, since the axial PTO shaft is at odds with the usual need for the driven shaft, which is either vertical (as with rotary mowers), or horizontally extending from one side of the implement to another (as with manure spreaders, flail mowers, and forage wagons). More complex equipment, such as silage choppers and snowblowers, have drives with outputs in more than one direction.

Gears from a five-speed + reverse gearbox from the 1600 Volkswagen Golf (2009).

The gearbox in a wind turbine converts the slow, high-torque rotation of the turbine into much faster rotation of the electrical generator. These are much larger and more complicated than the PTO gearboxes in farm equipment.

The post DC Gear Motors Reduction appeared first on MOTOR.

]]>
https://www.andmotor.com/dc-gear-motors-reduction/feed/ 0